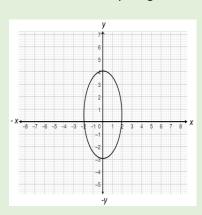

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

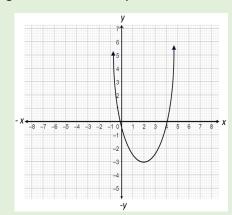
PREPARATORIA 25 "DR. EDUARDO AGUIRRE PEQUEÑO"

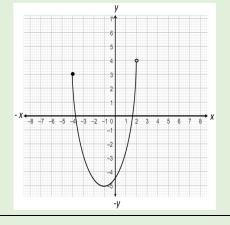
Semestre: Enero – junio 2024

PORTAFOLIO EXTRAORDINARIO (3^a, 4^a, 5^a y/o 6^a oportunidad)

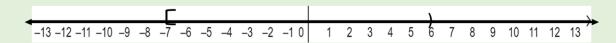
UA: FUNCIONES Y RELACIONES


Semestre:	Tercero
Oportunidad:	
Estudiante:	
Matrícula:	
Coordinador:	Mtro. Armando Campillo Olvera
Correo:	armando.campilloolv@uanl.edu.mx
Fecha de entrega:	de 2024.


General Escobedo, NL, 10 de febrero 2024.


Sigue las instrucciones para entregar este portafolio impreso y completamente contestado. Valor del portafolio 40% Examen 60%

ETAPA 1: FUNCIONES LINEAL Y CUADRÁTICA


- Define y representa la variable dependiente.
- 2. Define y representa la variable independiente.
- 3. Define y escribe un ejemplo de: Dominio y Rango
- 4. Representa las diversas formas en las que se presenta una relación.
- 5. Establece el dominio y rango de las siguientes relaciones y determina si son funciones.

6. Representa las siguientes desigualdades en forma de intervalo.

7. Determina el dominio de las siguientes funciones

$$f(x) = \frac{2x+8}{x-3} \qquad f(x) = \frac{5x-20}{x^2-16} \quad f(x) = \frac{2x-10}{x^2-2x-24} \quad f(x) = \frac{x-8}{2x^2-4x}$$

$$y = 2 + \sqrt{x - 4}$$
 $g(x) = 3x + 4$

- 8. Menciona y ejemplifica la clasificación de las funciones.
 - Dadas las siguientes funciones, halla: a) f+g b) f-g c) f.g d) f/g, si g(x) ≠0
- 9. $f(x) = 2x^3 x^2 + 3x 4$ g(x) = 3x 2
- 10. $f(x) = 7x^3 3x^2 + 5x 8$ $g(x) = x^2-16$
- 11. $f(x) = -2x^3 5x^2 3x 1$ $g(x) = 3x^2 6x$
- 12. Encuentra a) $(f \circ g)(x)$ b) $(g \circ f)(x)$
 - a) f(x)=4x+2, g(x)=-5x+12
 - **b)** $f(x) = \sqrt[3]{9x + 2}$, $g(x) = x^3$

¿Qué es una función lineal? Define función constante y función identidad 15. Define pendiente de una recta y cuál es su fórmula 16. ¿Cuándo la función lineal es creciente? ¿Cuándo la función lineal es decreciente? 18. Indica cuáles si son crecientes o decrecientes las siguientes gráficas de funciones lineales. El valor catastral de una casa que tiene 20 años de uso es de \$70,000 pero hace 14 años era de \$119,000. Si dicho valor se deprecia linealmente con el tiempo (t) y la ecuación particular que relaciona el valor catastral con los años de uso es v = -3500t + 140000; determina: a) El valor de la casa cuando era nueva. b) Cuánto varía el valor catastral por año. El costo por conducir un automóvil varía linealmente con la distancia recorrida. Eliud gastó \$1,048.00 durante el mes de marzo por conducir 540 km y \$2,080.00 en abril por 1400 km. Encuentra: a) La ecuación que expresa el costo en función a la distancia recorrida. b) ¿Cuál será el costo de conducir 1500 km durante 1 mes? 21. El costo de enviar un paquete para entregar al día siguiente de una ciudad a otra es de \$18.56 para un paquete de 1 kg de peso y \$2.87 por cada kilogramo adicional. Si x representa el peso adicional en kilogramos del paquete determina: a) La ecuación que resuelva el costo por envío. b) ¿Cuál es el costo de entregar un paquete que pesa 18 kg? 22. Cuando un cuerpo cae a partir del reposo, su velocidad es directamente proporcional al tiempo de vuelo. Si al final de 2 segundos la velocidad de un objeto que cae desde el reposo es de 19.6 m/s ¿Cuál será la velocidad a los

23. Una persona observa que, en una cinta de medir, 8 pulgadas es aproximadamente la misma longitud que 20 cm. A

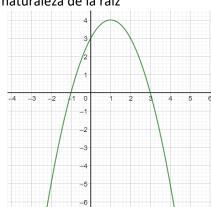
continuación, usa el modelo para encontrar los centímetros que hay en 18 pulgadas.

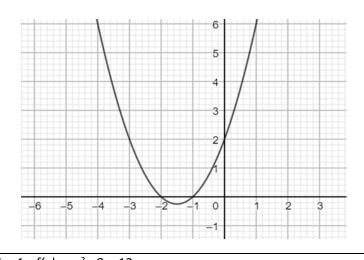
¿Qué es una función cuadrática?, ¿Cuál es su ecuación? Y ¿Cuál es su gráfico?

¿Cuáles son las características principales de la parábola?

¿Cómo se obtienen el vértice y eje de simetría de una parábola?

Menciona cuáles son las naturalezas de las raíces.


5 segundos?


26.

28.

Determina:

- a) Las coordenadas del vértice
- b) Intersección en "y"
- c) Intersección en "x"
- d) La naturaleza de la raíz

- 29. Determina de las siguientes ecuaciones $f(x) = x^2 + 5x + 4$ y $f(x) = -x^2 + 8x 12$
 - a) Hacia donde abre la gráfica
 - b) La ordenada es valor máximo o mínimo
 - c) Las intersecciones con el eje "x"
 - d) Las intersecciones con el eje "y"
 - e) La naturaleza de las raíces

- ¿Cuál es la fórmula de la forma vértice de una ecuación cuadrática?
- Transforma las siguientes ecuaciones en la forma vértice
 - a) $y=-x^2+4x+7$
 - b) $y=3x^2-12x+7$

 $1. \quad f(X) = \left(\frac{1}{5}\right)^x$

, ,	.5/	
X	f(x)	P(x,y)
-3		
-2		
-1		
0		
1		
2		
3		

X	f(x)	P(x,y)
-3		
-2		
-1		
0		
1		
2		
3		

 $1. Log_5 X = 3$ $2. Log_6 S = 1.5$ $\frac{Log_b M = x \qquad ; \qquad b^x = M}{3. Log_9 P = 1}$

 $4. Log_2 M = 9$

 $5. Log_{20} K = 2$

 $1.Log_5(RS)$

 $2. Log_9 (M^2N^3) | 3. Log_3(\frac{p}{q^5})$

 $4.Log_{11} \left(\frac{s^6 t^4}{xz^7} \right)$

 $5. Log_2 \left(\frac{3^7 5^{\frac{9}{8}} 7^2}{7^{\frac{a}{c}}} \right)$

1. $log_4(6x+1) = 2$ 2. $log_65m = 4$

3. logaritmo de $5^{4x-1} = 4 \cdot e^{5x} = 7800$ 15625

MODELACION MATEMATICA DE FUNCIONES EXPONENCIALES Y LOGARITMICAS

- 1.La difusión que se da entre personas que recomiendan el uso de las compañías de radiocomunicación anual incrementa sus usuarios en base a la función $c(t) = 250(1.018)^t$. Determina;
 - a) La cantidad de clientes que se suman a dicha compañía durante los primeros 6 meses de difusión.
 - b) La cantidad de usuarios desde el primer año hasta el 2do año considerando el crecimiento trimestralmente.
 - c) Construye un tabulador; valores del dominio y rango y su gráfica.
- 2. El motor de un avión tiene una magnitud de sonido en decibeles dada por la expresión d = 10Log(i). Determina;
 - a) Si el motor de un avión alcanza 120 decibeles cual es la intensidad con la que se percibe el sonido.
 - b) En una calle transitada se perciben 70 decibeles. Cuantas veces es más intenso el sonido en comparación del avión.
 - c) Calcula la intensidad en decibeles del ruido de un sonido que marca 125 decibeles.

- 3. Se depositan \$1,000.00 en una cuenta de ahorros que paga el 12% de interés compuesto anualmente, donde la cantidad anual se refleja por la expresión: $d(t) = 1000(1.12)^t$, determina;
 - a) La cantidad de dinero que se acumulará en 5años.
 - b) La cantidad de dinero se acumulará al pasar 17 años.
 - c) Construye un tabulador; valores del dominio y rango y su gráfica
- 4.Los niveles de sonido en decibeles (dB) expresados por $d = 10(Log\ P + 16)$ en un concierto de Rock que definen a P (Potencia) medida en watts/cm² determina;
 - a) Calcula la intensidad del sonido cuya potencia es de 0.0025watts/cm².
 - b) Calcula la potencia del sonido cuya intensidad es de 105dB.
 - c) Calcula la potencia del sonido cuya intensidad es de 135dB.

ETAPA 3: LA RECTA COMO LUGAR GEOMÉTRICO

- Conjunto de puntos en el plano cartesiano que cumplen ciertas condiciones, es decir, la curva formada por los puntos que satisfacen una ecuación determinada.
- 2. Fragmento de recta comprendido entre dos puntos, a los cuales se llama extremos_____
- 3. Es la longitud del segmento de recta que une dichos puntos______
- 4. Determina la distancia entre los puntos:

(-6,11) y (9,1)	(x,5) y (8,4)
(-0,11) y (3,1)	(A,O) y (O,+)
(6,3) y (-13,3)	(3,0) y (8,1)

5. Es el punto que divide en dos líneas de igual longitud_____

6.	Determina en el punto medio para los se	egmentos delimitados por cada par de coordenadas.
	(3,12) y (8,0)	(-5,9) y (10,8)
7.	Si la pendiente (m) de una recta es pos	itiva, la recta es y si es negativa, la recta
	es	
8.	Determina las pendientes de los siguien (2,10) y (8,40)	(2,1) y (8,4)
	(2,4) y (10,4)	(3,4) y (9,12)
9.	Si se conoce la pendiente (m) de la recta	a y un punto perteneciente a ella, se puede formar una ecuación

llamada_

TO. ESCIDE IS	a ecuación punt	o-penalente (ue una recta	que paso p	oi ios puntos	(-2,-2) y (14,4 ₎).
11. Escribe l	a ecuación pun	to-pendiente	de una recta	a que paso p	or los puntos	(-6,0) y (0,4).	
12. Tipos de	Rectas		.,		У		_

13.	Resuel	ve lo	aue	se	te	nide
10.	1 COUC	V C 10	quo	JU	w	piac

Determina la ecuación de la recta, que pasa por el punto (5,17) y es paralela a la recta y=3x-7

Una recta pasa por los puntos (3,2) y (11,5) y es paralela a otra recta que pasa por los puntos (-1,-2) y (7, y). Encuentra el valor de y.

Una recta pasa por los puntos (3,5) y (9,1) y es paralela a otra recta que pasa por los puntos (x,7) y (18,1). Encuentra el valor de x.

Indica si los pares de rectas son paralelos, perpendiculares u oblicuos.

a)
$$-9 - x + y + 11 = 0$$
 y $y = 9x + 4$

b)
$$y = -\frac{5}{3}x - 3y 3x - 5y - 12 = 0$$

14. Determina la fórmula para obtener la distancia de un punto a una recta.

15. Aplicando la formula anterior determina la distancia entre los elementos dados.

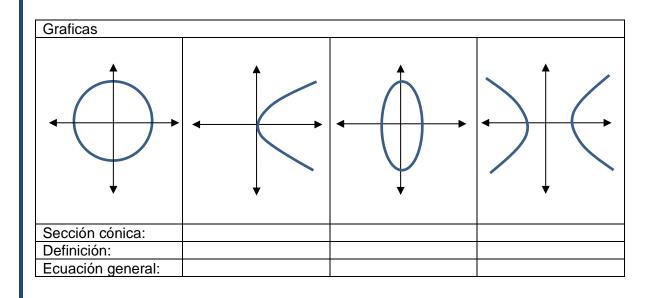
La recta $4x - 7y + 15 = 0$ y el punto (-	La recta $-3x + 2y + 18 = 0$ y el punto
1,6)	(4,5)

Las rectas:
$$5x + 12y + 2 = 0$$
 y $5x +$ Las rectas: $y = 4x + 6$ y $4x - y - 18 = 0$ $12y + 21 = 0$

Usando la ecuación forma pendiente-intersección responde lo que a continuación se te pide.

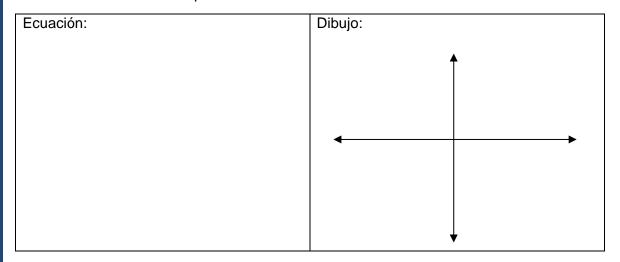
- 16. El valor comercial de un automóvil que tiene 8 años de uso es de \$56,000, pero hace 3 años era de \$80,000. Si dicho valor varia linealmente con el tiempo, halla:
 - a) La ecuación particular que expresa el valor del auto en términos del tiempo de uso.
 - b) El valor del auto cuando tenga 12 años de uso.

c) A los cuantos años de uso ya no tendrá valor comercial el carro.
17. Al comparar termómetros es escalas Celsius y Fahrenheit se ha encontrado que la lectura Fahrenheit varía linealmente con la lectura Celsius. Si un termómetro Celsius indica 100º cuando un termómetro
Fahrenheit indica 212º Fe indica 0ºC cuando un termómetro Fahrenheit indica 32ºF, determina.
a) La ecuación particular.
b) ¿A cuántos ºF equivale 20ºC?
b) The durings if equivale 20 0:
c) ¿A que temperatura el número de grados Fahrenheit es igual al número de grados Celsius?


18. El costo por conducir un automóvil varía linealmente con la distancia recorrida. Carlos gasto \$1048 durante el mes de marzo por conducir 540km y \$2080 en abril por 1400km. Encuentra:
a) La ecuación que expresa el costo (c) en función de la distancia recorrida (d)
b) El costo de conducir 1500 km durante un mes.
a). Durante al mass de contiembre el coste fue de \$4200 y Quéntes bilémetres recorrié el cuto?
c) Durante el mes de septiembre el costo fue de \$1360. ¿Cuántos kilómetros recorrió el auto?
19. En 1989 se compró una casa en \$130 000. En 1993 fue valuada en \$190 000. Suponiendo que el valor
comercial (v) de la casa crece linealmente con el tiempo (t), determina:
a) La ecuación particular que relaciona el valor comercial de la casa con el tiempo de uso en años.
b) ¿Cuánto varía el valor de la casa por año?

c) ¿Cuál es el valor de la casa dentro de seis años?
20. Una compañía encuentra que el costo de producir 60 relojes es de \$9 200, mientras que producir 300 relojes le cuesta \$20 000. Si el costo varía linealmente con la cantidad producida, determina el costo de producir 600.

ETAPA 4: SECCIONES CÓNICAS


De acuerdo con la información proporcionada en la tabla determina que sección cónica, la definición y ecuación corresponden a las gráficas siguientes.

Sección cónica	Definición	Ecuación general (con centro en el origen)
1. Elipse	A. Lugar geométrico donde todos los puntos en el plano cartesiano cuya distancia a una recta fija llamada directriz centro	P. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
2. Hipérbola	 B. Lugar geométrico de todo los puntos en el plano p(x,y) son equidistantes a un punto fijo llamado 	$Q. \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
3. Circunferencia	C. Lugar geométrico de todos los puntos en el plano cartesiano tales que el valor absoluto de la diferencia de sus distancias a dos puntos fijos llamados focos es contante	$R. x^2 = 4ay$ $y^2 = 4ax$
4. Parábola	 D. Lugar geométrico de todos los puntos en el plano cartesiano, tales que la suma de sus distancias a dos puntos fijos llamados focos es constante 	S. $r^2 = x^2 + y^2$

II. Contesta lo que se te pide en cada caso

5. Encuentra la ecuación de una circunferencia con centro en el origen y radio 5 y realiza el dibujo de la circunferencia en el plano cartesiano

- 6. Si la ecuación de una circunferencia es $x^2 + y^2 = 225$. Determina:
 - a. Coordenadas del centro_____
 - b. Radio: _____
- 7. A partir de la parábola $y^2 = -64x$, encuentra:

a) La longitud del lado recto	b) Las coordenadas de los puntos extremos del lado recto	c) Las coordenadas del foco
d) La ecuación de la directriz	Traza su grafica (indicando c anteriores)	ada uno de los puntos

8. A partir de la parábola $x^2 = 24y$, encuentra:

e) La longitud del lado recto	f) Las coordenadas de los puntos extremos del lado recto	g) Las coordenadas del foco
h) La ecuación de la directriz	Traza su grafica (indicando canteriores)	ada uno de los puntos

9. De acuerdo con la información proporcionada acerca de una parábola, determina la ecuación que

corresponda y satisfaga las características proporcionadas:

a) Foco en (0, -5)	b) Directriz x= 6
Ecuación de la parábola:	Ecuación de la parábola:
c) La longitud del lado recto es 18 y se abre hacia la izquierda:	d) La parábola pasa por el punto (- 4,10) y su eje focal esta sobre el eje x
Ecuación de la parábola:	Ecuación de la parábola:

10. Si le ecuación de una elipse es $\frac{x^2}{16} + \frac{y^2}{4} = 1$. Determina:

da lado recto

c) La longitud del eje menor	d) La excentricidad
e) Las coordenadas de los focos	f) Las coordenadas de los extremos del eje menor
g) Las coordenadas de los vértices	h) La gráfica

11. De acuerdo con la ecuación de la elipse: $\frac{y^2}{64} + \frac{x^2}{9} = 1$. Determina:

a) La longitud del eje mayor	b) La longitud de cada lado recto
c) La longitud del eje menor	d) La excentricidad
e) Las coordenadas de los focos	f) Las coordenadas de los extremos del eje menor
g) Las coordenadas de los vértices	h) La gráfica

12. A partir de la hipérbola $\frac{x^2}{36} - \frac{y^2}{9} = 1$. Determina:

a) Las coordenadas de los vértices	b) Las coordenadas de los focos
c) La excentricidad	d) La longitud del eje transverso
e) La longitud del eje conjugado	f) La longitud de cada lado recto
g) Las ecuaciones de las asíntotas	h) La grafica con los elementos anteriores

13. A partir de la hipérbola $\frac{y^2}{121} - \frac{x^2}{49} = 1$. Determina:

i) Las coordenadas de los vértices	j) Las coordenadas de los focos
k) La excentricidad	I) La longitud del eje transverso
m) La longitud del eje conjugado	n) La longitud de cada lado recto
o) Las ecuaciones de las asíntotas	p) La grafica con los elementos anteriores